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Rules for calculation of approximate value of definite 

integral 
 

Enayatullah Enayat 
 
Abstract 
We can calculate the definite integral exact value of f function with basic theorem of calculus which 
explains: 
 

     
b

a
I f x dx F a F b    

 

If we can find an initial function for f . Despite all the conventional methods which exist for 

determining of initial function, we can find functions that are integrable in closed interval of  ,a b , but 
there is no specified rule for them to determine an initial function. For example we consider the definite 

integral of 
21

0

xe dx , this integral exists but we can compute with classic rules. For approximate value 
determination these kinds of integrals there are some rules that we research three of them (trapezoid, 
Simpson, midpoint) in this article. 
 

Keywords: Trapezoid rule, Simpson’s rule, midpoint rule, error estimation 
 
1. Introductions 
If we cannot integrate definite integral with analytical rules, we can compute with numerical 
integration rules. We evaluate the I approximate value of definite integral with 

 f x values in  ,a b number of finite point. The obtaining this kind of approximate is 

called numerical integration. We can use the up and down sums (Riemann’s sum) for this 
purpose, but these sums usually require much more calculations than the rules mentioned 

here to obtain the desired accuracy. We need to calculate  f x in an equal space sum from 

 ,a b points for calculation of definite integral in trapezoid, Simpson, midpoint rules. The 

calculation for determining an approximate value I integral are approximately proportional 
the number of function values required. In conclusion, to obtain a desired degree from 
integral, it is better method that it requires less computation function. 
 
2. Trapezoid rule  
The trapezoidal rule for calculation of definite integral is based on approximating between a 
curve and axis of x with the help of a trapezoid, it is fixed instead of rectangles. The length 

of the subintervals which obtains by 1 2 1,..., ,nx x x , it is not necessary to be equal, but if it is 
equal the yield formula gets easier. Therefore, we suppose the length of each subinterval as 
follow: 
 

b a
h x

n


  

 
 
2.2. Definition (Trapezoid rule) 

The n subinterval of trapezoid rule denoted with 
( )

b

a
f x dx  and it is equal to 
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0 1 2 3 1

1 1
( )
2 2n n nT h y y y y y y      

 
 
(Nekokar & Darwishi, Numerical Calculation, 2013). 
Now we explain the trapezoid rule by it the approximate of 
an integral that we know its value before 
 

2

1

1
ln 2 0.69314718...I dx

x
  

 
 
(This value and all mentioned approximates in this article 
were calculated with a scientific calculator.) 
 

 
 
2.3. Figure: In trapezoidal rule we approximate the small 
curve lines to lines. For estimation of dark area, we sum the 
trapezoidal areas which are created by connecting two tips 
of these lines to x axis. Hence, we can approximate the 

main integral of 
 

b

a
f x dx  by sum of these trapezoidal areas 

(Thomas & Fini, 2013) [9]. 
 

2.4 Example: Compute the 8 4,T T  and 16T  trapezoid rule 
approximates for  

Solution: We have 

 2 1 1

4 4
h


 

 for 4n  ; 

1

8
h 

 for 

8n  ; 

1

16
h 

 for 16n   
Therefore, 
 

 4

1 1 4 2 4 1 1
1 0.69702381...

4 2 5 3 7 2 2
T

             
 

 8

1 1 8 4 8 2 8 4 8 1 1
1

8 2 9 5 11 3 13 7 15 2 2
T

                 
 

4

1 8 8 8 8
4 0.69412185...

8 9 11 13 15
T          

 

16 8

1 16 16 16 16 16 16 16 16
8

16 17 19 21 23 25 27 29 31
T T

             
 

0.69339120...  
 
Focus on how function values are applied in calculation of 

4T , it was reapplied in 8T . Hence, how function values relate 

to 8T  into 16T  were applied. When approximate requires, the 
doubling number of subintervals for every new calculation 
is very effective. 
 

 
 
2.5. Figure  
If the curve be on concave, the trapezoid areas are 
maximum than under curve area. 

In conclusion the values of f  which are already calculated, 
can be applied again.  

All the trapezoid rule approximates to 

2

1

1
I dx

x
 

 are 

maximum from the exact value of I . That’s why the graph 

of 

1
y

x


 by  1, 2 is above the concave and therefore, the 
above section of approximate trapezoids are on curve. 
The accurate errors can be calculated in three approximates, 

because we know that 

2

1

1
ln 2 0.69314718...dx

x
 

 
(Remember that the error in approximate is always equal to 
the exact negative value of the approximate value.) 
 

4 0.69314718... 0.6902381...I T    
 

0.00387663...  
 

8 0.69314718... 0.69412185... 0.00097467...I T    
 

16 0.69314718... 0.69339120... 0.00024402...I T   
 

Every time that n  doubles, the error reduces about one-
fourth of its previous value. In the following we will show 

that it is possible for function like 
1

x
. 

 
2.6. Example: It is in an artificial way, it means that we 
know the exact value of integral, in this case we do not need 
to an approximate. In practical application of numerical 
integrating, we do not know the exact value we are tempted 
to compute some approximate for ascending values of n  
until the two most recent agree on a maximum acceptable 
value of prescribe error. We may claim that 2 0.69...In   
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from the comparison of 4T
to 8T

, and with more 

comparison we may suggest 16T
 and 8T

 that the third 

decimal number is about 3: 0.693...I  . Although, this 
approach cannot be legitimized in general, it is often used in 
practice. 
 
3. Error estimation in trapezoid rule 

If f  function in closed interval of  ,a b  includes second 

continuous derivation and M be a top bound for 
f 

 

values, in this case TE
 error in f  approximate integral 

from a  to b satisfies for the following inequality 
(Silverman, 2009) [8]. 
  

2

12T

b a
E h M




 
 
3.1. Example: Set bound for the corresponding errors of 

8 4,T T , 16T
 and for 

2

1

1
I dx

x
 

. 

Solution: If 
  1

f x
x


, then 

  2

1
f x

x
  

 and 

  3

2
f x

x
 

. In  1, 2
 interval we have 

  2f x 
. In 

conclusion we can suppose in estimate 2M  , so  
 

  22 2 1 1
0.0104....,

12 4TE
    

   
 

  22 2 1 1
0.026....,

12 8TE
    

   
 

  22 2 1 1
0.00065....,

12 16TE
    

   
 
The previous exact calculated errors are smaller than these 

bounds, since 
 f x

 over most  1, 2
 interval is relatively 

smaller than 2M  . 
 
Comment: Error bounds often do not obtain easily like 

example 2. Specially, if the actual formula for 
 f x

not be 
specified. Then we do not have any approach for calculation 

of 
 f x

; in conclusion we cannot set M . The above 
inequality theoretical significance is more than its practical. 
 
Simpson’s rule 
The other approach that we use for computation of definite 
integral approximate value is Simpson Rule (Parabola). In 
this approach better approximate obtains than trapezoid 
approximate. In this approach like trapezoid rule we obtain 

0 1, ,..., np p p
 points, but instead of connecting points with 

straight lines, we connect them with parabola line to each 

other. Before discussing more about its details, first we 
prove the following theorem. 
 
3.2. Theorem  

The bounded surface between 
2y ax bx c    parabola, 

x axis, 0x x  and 2x x  lines and y  axis. If 

2 0 2x x h 
 then it is equal to 

  

 0 1 2

1
4

3
s h y y y  

 
 
In which,  

1 0x x h    2 2y y x
,  1 1y y x

,  0 0y y x
 

 
Proof: 

2
0 0 0y ax bx c    

   2

1 0 0y a x h b x h c    
 

   2

2 0 02 2y a x h b x h c    
 

 
And in conclusion 

   2
0 1 2 0 0 04 6 12 8 6 6 6y y y a x hx h b x h c       

 
On the other hand, 

  
2 22 3 2

3 2

x x x h

xx

a b
s ax bx c dx x x cx

      
 

    2
0 0 06 12 8 6 6 6

3

h
a x hx h b x h c     

 
 
By consideration of above, 

 0 1 24
3

h
s y y y  

 

Suppose that f  is connected in  ,a b
 closed interval, we 

divide the  ,a b
 interval into 2n  equal parts to obtain 

0 1 2, ,..., nx x x
 points. From these points we draw the y

s 

axis to intersect the function graph in 0 1 2, ,..., np p p  points. 
We know that a parabola passes through three unreal points 

on an endurance. We pass 
2y ax bx c   equation from 

2 1 0, ,p p p  points on a parabola graph. With consideration to 
previous theorem we can say the area between parabola and 

0x x  and 2x x , the x
es axis is equal to  

 

 1 0 1 2

1
4

3
s h y y y  

 
 

In which 2

b a
h

n




, on the other hand this area is equal to 

the region area between function graph, 0x x , 2x x
 

lines and x
es axis, thus 

   2

0
0 1 2

1
4

3

x

x
f x dx h y y y  
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Likewise, if we consider the region between function graph of f , 4x x
, 2x x

 lines and x
es axis, then we have 

 

   4

2
2 3 4

1
4

3

x

x
f x dx h y y y  

 
 

   2

2 2
2 2 2 1 2

1
4

3

n

n

x

n n nx
f x dx h y y y


   

 
 

With sum of above relation, we have 
 

   0 1 2 2 3 4 2 2 2 1 2

1
4 4 ... 4

3

b

n n na
f x dx h y y y y y y y y y          

 
Or 

      0 2 1 3 2 1 2 4 2 2

1
4 ... 2 ...

3

b

n n na
f x dx h y y y y y y y y          

 
 

(Nekokar, Calculus, 2007) 
 

 

 
 

 Fig 1.3 
 

3.3. Definition (Simpson rule)  

We divide  ,a b  interval into 2n  equal -space in which 2

b a
h

n




, it was denoted with 2nS
 and it is equal to 

 

      2 0 2 1 3 2 1 2 4 2 24 ... 2 ...
6

b

n n n na

b a
f x dx S y y y y y y y y

n  


          

 
 

(Maroon, 2009) 
 

 

3.4. Example: Compute 8 4, ,S S  and 16S
 approximates for 

2

1

1
I dx

x
 

, and compare them with 
ln 2 0.6914718...I    actual value and also with 

8 4, ,T T
 and 16T

 yield in example 1. 
 
Solution: We have 

2 4n   
 

4

1 1 4 2 4
1 4 2 4

12 2 5 3 7
S

                        

 
0.69325397...,  

 
2 8n   

 

8

1 1 8 8 8 8 4 2 4
1 4 2

24 2 9 11 13 15 5 3 7
S

                    
 

0.69315453...,  
 

2 16n   
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16

1 1 16 16 16 16 16 16 16 16 8 4 8 2 8 4 8
1 4 2

48 2 17 19 21 23 25 27 29 31 9 5 11 3 13 7 15
S

                              
 

0.69314765...  
 

The three approximate errors are as follow: 
 

4 0.69314718... 0.69325397... 0.00010679,I S    
 

8 0.69314718... 0.69315453... 0.00000735,I S    
 

16 0.69314718... 0.69314765... 0.00000047,I S    
 

These errors are obviously minor than trapezoid 
approximates (Babulian, Numerical analysis principle, 
2013) [2, 3].  
 
Error estimate in Simpson rule 

If f function includes fourth continuous derivation 
 ,a b

 

bounded interval and N be a top bound for f   values in 

this case the SE
 error in f approximate integral from a  to 

b satisfy the following inequality (Babulian, Numerical 
analysis, 2010) [2, 3]. 
 

 21

180SE h b a N 
 

 
2.3. example into 1.3. approximates example, find bound for 
absolute errors. 

Solution: If 
  1

f x
x


, thus 

 

   2 3

1 2
, ,f x f x

x x
   

 
 

       3 4

4 5

6 24
, ,f x f x

x x
  

 
 

It is obvious that in  1, 2
we have 

   4 24f x 
; in 

conclusion for estimate 24N   can be taken. We have 
 

  424 2 1 1
0.00052083,

180 4SE
    

   
 

  424 2 1 1
0.00003255,

180 8SE
    

   
 

  424 2 1 1
0.00000203,

180 16SE
    

   
 
We remark again that actual errors are well in the 
dominance of these errors. 
 

Low-order polynomial 

If 
 f x

 be a polynomial which its order is less than four, 
in this case its fourth derivation is zero and we have 
 

     44 4 0 0.
180 180S

b a b a
E h f c h

 
    

 
 

therefore, in Simpson approximate every integral of f does 

not have any error. In other word, if the proved f  be a first-
order function (linear) or a second or third-order polynomial 
apart from number of subintervals in interval division, 

Simpson rule obtains the exact value of every f integral. 

In addition, if there is proved f  or first-order function 
(linear), thus its second derivation is zero and we have 
 

   2 2 0 0.
12 12T

b a b a
E h f c h

     
 

 
Therefore, trapezoid rule obtains the exact value of every 
f integral. 

 
3.5. Example: Compute the actual approximate 

2 2

0
I x dx   integral by Simpson rule and compare it with 
exact value of integral. 
Solution: We have 
 

2 4n   
 

   
2 2

2 2

4

1 1 3 8
0 2 4 2 1 4

6 2 2 3
S

             
       

 
And the exact value of integral is 
 

2
2 2 3

0
0

1 8

3 3
I x dx x   

 
 
4. Midpoint rule 

An approximate in simpler way to 
 

b

a
f x dx , based on 

 ,a b
 partition to n  equal-subinterval, requires to form a 

Riemann sum of rectangles areas which their heights in 
midpoints of n  subinterval were taken. 
The trapezoid and Simpson rules can compute integrals such 

as 

1

0

dx

x
 . These rules are required that  f x

function be 
continuous at start and end points of the integral. The 
midpoint rule is not efficient for the computation of 
integrals which are not continuous at start and end point 
(Yousefi, 2010) [10]. 
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4.1. Figure: The midpoint rule approximate of nM  to 

 
b

a
f x dx , Riemann sum based on heights to f  graph is 

partition in subinterval points. 
 
 
4.2 Definition: (Midpoint rule) 

If 

 b a
h

n




 as we let 1 j n  , so 
1

2jm a j h
          . The midpoint rule approximate to 

 
b

a
f x dx  denoted by nM

 and it is equal to 
  

        1 2
1

... .
n

n n j
j

M h f m f m f m h f m


     
 

4.3 Example: Find the midpoint rule approximates of 4M
 

and 8M
 for 

2

1

1
I dx

x
 

 integral and compare their errors 
with obtained errors for trapezoid rule approximates. 

Solution: To find 4M
, we divide 

 1, 2
 interval into four 

equal-subintervals 

3 7 5 3 5
, , , , 1,

2 4 4 2 4
     
            and 

7
,2

4
 
   . The 

midpoints of these intervals are 

13 11 9
, , ,

8 8 8  and 

15

8 . The 

midpoints of subintervals for 8M
 obtain likewise. The 

required point rule approximates are 
  

4

1 8 8 8 8
0.69121989...

4 9 11 13 15
M          

 

8

1 16 16 16 16 16 16 16 16

4 17 19 21 23 25 27 29 31
M             

 

0.69266055...  
 
The errors of these approximates are 
  

4 0.69314718... 0.69121989... 0.00192729...I M   

8 0.69314718... 0.6926655... 0.00048663...I M   

These errors have different notations and they are about half 
of trapezoid rule. 

4.4. Example: Obtain an approximate of 

9

100

0

dx

x
 by 

3

100
h 

 with midpoint rule. 

Solution: We divide the 

9
0,

100
 
    interval into three equal-

subintervals of 

3 3 3
, , , 0,

100 50 100
   
        and 

3 9
,

50 100
 
   . The 

midpoints of these intervals are 

9 3
, ,

200 200
   
        and 

15

200
 
   . 
  

3

3 200 200 200
4959

100 3 9 15
M

 
    

   
 
 
Error estimate in midpoint rule 

If f  function in closed interval of 
 ,a b

 includes second 

continuous derivation and K  be a top bound for 
f 

 

values. In this case, the ME
 error in f  approximate 

integral from a  to b satisfies into the following inequality. 
 

2

24M

b a
E h K




 
 
5. Conclusion 
Midpoint rule apparently is better than trapezoid because its 
error is about half than trapezoid rule error and the value of 
a function in point is calculated less. In addition, it is 
applicable for calculation of integrals in which the function 
at start and end of interval includes infinite integrating. But, 
trapezoid rule has marvelous specialty which midpoint and 
Simpson doesn’t. In example 1.2 it was seen how applied 

function values in 4T
 calculation reused in 8T

 calculation, 

likewise how function corresponding values to 8T
 were 

applied on 16T
. But in Simpson rule polynomial functions 

which their order is less than four it doesn’t have any error. 
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