
~ 128 ~

International Journal of Advanced Academic Studies 2019; 1(1): 128-132

E-ISSN: 2706-8927

P-ISSN: 2706-8919

IJAAS 2019; 1(1): 128-132

Received: 26-05-2019

Accepted: 27-06-2019

Dr. Daya Shankar Pratap

Research Scholar, Department

of Mathematics, JP

University, Chapra, Bihar,

India

Corresponding Author:

Dr. Daya Shankar Pratap

Research Scholar, Department

of Mathematics, JP

University, Chapra, Bihar,

India

Study of Unified algebra

Dr. Daya Shankar Pratap

Abstract
I present a unified algebra that includes what are commonly called boolean algebra, number algebra,

sets, lists, functions, quantification, type theory, and limits; this mathematics forms the foundation for

much of computer science. I present the notations and the rules for the conduct of algebra, but it is not

the purpose here to explore the possibilities for their use. I am laying foundations, not building upon

them; I am designing the instrument, not playing the music. To appreciate the algebra, I rely on the

reader's experience in using algebra.

Keywords: Unified algebra

Introduction
The algebra is presented from the very beginning, leaving out nothing. That makes the early

parts of the presentation very basic, but readers may appreciate the care and effort required to

design a simple and general algebra. And it's a nontrivial problem to get the presentation

started without ever saying “trust me for now, I'll make this clear later”. Anyone interested in

implementation on a computer must pay attention to micro-mechanical detail. The viewpoint

I adopt throughout is formalist, as required for implementation.

I begin with boolean algebra, renamed “binary algebra”, and its two extremes, renamed “top”

and “bottom”. That's the only new terminology. By contrast, standard terminology that I

won't be using includes: boolean, true, false, proposition, sentence, term, formula,

conjunction, conjunct, disjunction, disjunct, implication, implies, antecedent, consequent,

axiom, theorem, lemma, proof, inference, entailment, syntax, semantics, valid, predicate,

quantifier, universal, existential, and existence. I consider symbols and terminology to be a

cost, not a benefit, when defining mathematical structures. Unified algebra gives us much

more mathematics for less cost than usual.

Algebra

I will soon introduce binary algebra, ternary algebra, number algebra, the algebra of some

data structures, and function algebra. In this section I say what is common to all of them.

Expressions and Values

An algebra consists of expressions, which are used to express values in the application

domain. For example, the values may be amounts of water, or voltage, or frequency of

vibration, or guilt and innocence. Here are four definitions that precede all choice of symbols

and rules of any algebra.

 Consistency: at most one value can be determined for each expression

 Completeness: at least one value can be determined for each expression

 Expressiveness: at least one expression can be determined for each value

 Uniqueness: at most one expression can be determined for each value

We must never use an expression to express more than one value; to do so would be a

serious error called inconsistency. Sometimes we may not say what value an expression

expresses; that is called incompleteness. For example, we will not be able to determine the

value of 0/0. (I prefer to avoid the question of whether 0/0 has no value, or has a value but

we cannot say what it is.) Consistency is essential; completeness is not. Expressiveness is

desirable; uniqueness is not. In general, several expressions may represent the same value.

When we say that 2+3 is 5, we do not mean that 2+3 and 5 are the same expression; clearly

they are not. We mean that the value represented by 2+3 is the value represented by 5. When

we say that 2+3 has value 5, we again mean that expression 2+3 represents the same value

International Journal of Advanced Academic Studies http://www.allstudyjournal.com

~ 129 ~

that expression 5 represents. We might just as well say that

5 has value 2+3.

Expression structure

An expression can be a part of a larger expression, in which

case it is called a “subexpression” of the larger expression.

One way to make a larger expression from a subexpression

is to write a symbol, such as –, followed by the

subexpression. The symbol is called an “operator”, and the

subexpression is called its “operand”. Another way to make

a larger expression is to write two subexpressions with a

symbol, such as + between them.

Placing operators between operands makes the structure of

some expressions ambiguous. For example, 2+3×4 might

mean that 2 and 3 are added, and then the result is

multiplied by 4, or that 2 is added to the result of

multiplying 3 by 4. To say which is meant, we can use

parentheses: either (2+3)×4 or 2+(3×4). To prevent a clutter

of parentheses, we decide on an order of evaluation. Here is

the order of evaluation of all operators in this paper.

0 constants a  0 1 3.14 and so on

variables x y and so on

bracketed expressions () { } []   within which

the order of evaluation again applies

1 juxtaposition f x left to right

2 one operand – ¢ $ ~ ¼ # → ∧ ∨ = + § + × ◊

right to left

two operands → right to left

subscript xn superscript xn right to left

3 two operands × / ∧ ∨ ¦– left to right

4 two operands + – + left to right

5 two operands ,,.. ‘ ; ;.. |

three operands

6 two operands = + < > ≤ ≥ : 

In the order of evaluation, two-operand + can be found on

level 4, and two-operand × on level 3; that means, in the

absence of parentheses, evaluate two-operand × before two-

operand +. The example 2+3×4 therefore means the same as

2+(3×4). Within levels 1, 3, and 4 evaluation is from left to

right. Within level 2 evaluation is from right to left. On level

6, x = y = z means the same as (x = y)∧(y = z), and similarly

for the other operators and mixtures of operators on that

level.

Binary algebra

The expressions of binary algebra are called “binary

expressions”. Binary expressions can be used to represent

anything that comes in two kinds, such as true and false

statements, high and low voltage, satisfactory and

unsatisfactory computations, innocent and guilty behavior,

north and south poles of magnets. In any application of

binary algebra, the two things being represented are called

the “binary values”. For example, in one application the

binary values are truth and falsity; in another they are

innocence and guilt. Binary expressions include:

a “top”

 “bottom”

–x “negate x”

x = y “x equal y”

x + y “x differ y”

x<y “x below y”

x>y “x above y”

x≤y “x at most”

x≥y “x at least y”

x∧y “x min y” (memory aid:

the symbol doesn't hold

water)

x∨y “x max y” (memory aid:

the symbol does hold

water)

x y “x neg min”

x y “x neg max y”

xyz “x if y else z”

The two simplest binary expressions are a and .

Expression a represents one binary value, and expression 

represents the other. In the other binary expressions, the

variables x, y, and z may be replaced by any binary

expressions. Whichever value is represented by expression

x, expression –x represents the other value. This rule can be

shown with the aid of a value table.

This table says that –a represents the same value that 

represents, and that – represents the same value that a

represents. We can similarly show how to evaluate other

binary expressions.

Preference

We have two binary values, and so far we have not shown

any preference for one over the other. Now we shall show a

preference for expressions with the value of a in four ways.

One way is to abbreviate the statement “Expression x has

the same value as a.” by just writing x, without saying

anything about it. Whenever we just write a binary

expression, we mean that it has the same value as a

(expresses the same value that a expresses). For example,

instead of saying “Expression a = a has the same value as

a.” we just say “a = a”. (Remember that truth is just one of

the binary values in just one of the applications.)

Ternary algebra

Between the two values represented by a and , we now

consider another value, represented by 0 (pronounced

“zero”). Ternary algebra can be applied to anything that

comes in three kinds. In one application, the three

expressions a, 0, and  represent the values “yes”, “maybe”,

and “no”. In another, they represent the values “large”,

“medium”, and “small”. An assignment of values to

http://www.allstudyjournal.com/

International Journal of Advanced Academic Studies http://www.allstudyjournal.com

~ 130 ~

variables that gives an expression the value 0 is called a

“root” of the expression.

The expressions of ternary algebra, called “ternary

expressions”, include all those of binary algebra. To

determine the value of these ternary expressions, we extend

the value tables.

When the variables have binary values, each expression has

the same value as it had in binary algebra; in that sense, we

have extended binary algebra to ternary algebra in a

consistent way. All our future extensions will likewise be

consistent. The expression x = –x has no solution in binary

algebra because both assignments of binary values give it

the value ; in ternary algebra it has solution 0.

Common laws

I have introduced binary and ternary expressions, and

mentioned expressions of four or more values. I am about to

introduce numbers, bunches, sets, strings, lists, and

functions by saying how to write them and giving their laws.

There are some laws of binary algebra that are not laws of

any other algebra; for example,

(x≤y) = –x ∨ y material order

((x=y)=z) = (x=(y=z)) associative

((x+y)+z) = (x+(y+z)) associative

The next two expressions are laws of binary algebra, and

one of the four-valued algebras mentioned in the previous

section, but not of any other algebra mentioned in this

paper.

x∨–x excluded middle

–(x∧–x) non contradiction

There are laws of some of our algebras that are not laws of

binary algebra, but only because they employ symbols that

are not symbols of binary algebra. Any law of any of our

algebras that employs only the symbols of binary algebra is

also a law of binary algebra.

There are many laws that are common to all of the algebras

in this paper; for example,

 ≤ x ≤ a extremes

x∧ =  base

x∨a = a base

x  = a base

x a =  base

x∧a = x identity

x∨ = x identity

(x=a) = x identity

(x+) = x identity

x = x reflexivity

x ≤ x reflexivity

x ≥ x reflexivity

–(x<x) irreflexivity

–(x>x) irreflexivity

– –x = x double

negation

or self-inverse

x∧x = x idempotence

x∨x = x idempotence

(x=y) = (y=x) symmetry

(xy) = (yx) symmetry

x∧y = y∧x symmetry

x∨y = y∨x symmetry

x¦ y = y ¦x symmetry

x– y = y –x symmetry

–(x < y < x) antisymmetry

–(x > y > x) antisymmetry

–(x < y = x) exclusivity

–(x > y = x) exclusivity

(x≤y) = (x<y) ∨ (x=y) inclusivity

(x≥y) = (x>y) ∨ (x=y) inclusivity

(x>y) = (y<x) mirror

(x≥y) = (y≤x) mirror

(x<y) = (–x>–y) reflection

(x∧y = x) = (x≤y) = (y = x∨y) connection

x∧(x∨y) = x absorption

x∨(x∧y) = x absorption

–(x=y) = (–x  –y) duality

–(x+y) = (–x = –y) duality

–(x<y) = (–x ≤ –y) duality

–(x≤y) = (–x < –y) duality

–(x>y) = (–x ≥ –y) duality

–(x≥y) = (–x > –y) duality

–(x∧y) = –x ∨ –y duality

 –(x∨y) = –x ∧ –y duality

–(x y) = –x –y duality

–(x y) = –x –y duality

x ∧ (x≤y) ≤ y modus ponens

(x+y) = –(x=y) unequality

x y = –(x∧y) neg min

x y = –(x∨y) neg max

(x∧y)∧z = x∧(y∧z) associativity

(x∨y)∨z = x∨(y∨z) associativity

(x = y = z) ≤ (x=z) transitivity

(x < y < z) ≤ (x<z) transitivity

(x > y > z) ≤ (x>z) transitivity

(x ≤ y ≤ z) ≤ (x≤z) transitivity

(x ≥ y ≥ z) ≤ (x≥z) transitivity

x∧y ≤ y ≤ y∨z specialization

and

generalization

x∧(y∨z) = (x∧y) ∨ (x∧z) distribution or

factoring

x∨(y∧z) = (x∨y) ∧ (x∨z) distribution or

factoring

(x ≤ y∧z) = (x≤y) ∧ (x≤z) distribution or

factoring

(x ≤ y∨z) ≥ (x≤y) ∨ (x≤z) distribution or

factoring

(x∧y ≤ z) ≥ (x≤z) ∨ (y≤z) antidistribution

(x∨y ≤ z) = (x≤z) ∧ (y≤z) antidistribution

(w∧x) ∨ (y∧z) ≤ (w∨y) ∧ (x∨z)

http://www.allstudyjournal.com/

International Journal of Advanced Academic Studies http://www.allstudyjournal.com

~ 131 ~

x<a>y = x base

x< >y = y base

–(x<y>z) = –x<y>–z distribution or

factoring

It is an interesting mathematical exercise to find a minimal

set of laws for an algebra. But those who wish to use the

algebra need to know many laws, and to them minimality is

of no concern. In this paper, no attention has been paid to

minimality.

Number algebra

I now introduce infinitely many values between a and .

Here are some of them.

 –3 –2 –1 0 1 2 3 a

All operators apply to all values.

The expressions of number algebra are called “number

expressions”. They can be used to represent anything that

comes in quantities, such as apples and water (a represents

an infinite quantity, and  represents an infinite deficit).

Expressions are formed as follows. any sequence of one or

more decimal digits, such as 5296 any of the ways of

forming an expression presented previously, such as

–5296 or 5296∧375 or 5297=375

x+y “ x plus y ”

x–y “ x minus y ”

x×y “ x times y ”

x/y “ x divided by y ”, “ x over y ”

xy “ x to the power y ”

Anyone is welcome to invent new expressions and add them

to the list.

Now that we have new expressions, we assign some of them

the same value as †. In these laws, d is a sequence of digits.

d0+1 = d1 counting

d1+1 = d2 counting

d2+1 = d3 counting

d3+1 = d4 counting

d4+1 = d5 counting

d5+1 = d6 counting

d6+1 = d7 counting

d7+1 = d8 counting

d8+1 = d9 counting

d9+1 = (d+1)0 counting

x+0 = x identity

x+y = y+x symmetry

x+(y+z) = (x+y)+z associativity

(<x<a) ≤ ((x+y = x+z) = (y=z)) cancellation

(<x) ≤ (a+x = a) absorption

(x<a) ≤ (+x = ) absorption

x + y∧z = (x+y) ∧ (x+z) distributivity or

factoring

x + y∨z = (x+y) ∨ (x+z) distributivity or

factoring

x + y z = (x–y) ∨ (x–z)

x + y z = (x–y) ∧ (x–z)

x + (y<z >w) = x+y<z >x+w distributivity or

factoring

–x = 0 – x negation

–(x+y) = –x + –y distributivity or

factoring

–(x–y) = –x – –y distributivity or

factoring

–(x×y) = (–x)×y associativity

–(x/y) = (–x)/y associativity

x–y = –(y–x) antisymmetry

x–y = x + –y

x + (y – z) = (x + y) – z associativity

(<x<a) ≤ ((x–y = x–z) = (y=z)) cancellation

(<x<a) ≤ (x–x = 0) inverse

(x<a) ≤ (a–x = a) absorption

(<x) ≤ (–x = ) absorption

(<x<a) ≤ (x×0 = 0) base

x×1 = x identity

x×y = y×x symmetry

x×(y+z) = x×y + x×z distributivity or

factoring

x×(y×z) = (x×y)×z associativity

(<x<a) ∧ (x+0) ≤ ((x×y = x×z) = (y=z))

 cancellation

(0<x) ≤ (x×a = a) absorption

(0<x) ≤ (x× = a) absorption

x/1 = x identity

(<x<a) ∧ (x+0) ≤ (x/x = 1) inverse

x×(y/z) = (x×y)/z = x/(z/y) multiplication-division

(y+0) ≤ (x/(y/z) = x/(y×z)) multiplication-division

(<x<a) ≤ (x/a = 0 = x/) annihilation

(<x<a) ≤ (x0 = 1) base

x1 = x identity

xy+z = xy×xz exponents

xy×z = (xy)z exponents

<0<1<a direction

(<x<a) ≤ ((x+y < x+z) = (y<z)) cancellation,

translation

(0<x<a) ≤ ((x×y < x×z) = (y<z)) cancellation,

scale

(x<y) ∨ (x=y) ∨ (x>y) trichotomy

Calculation

Given an expression, we might find a simpler expression

with the same value. For example,

x×(z+1) – y×(z–1) – z×(x–y) distribute

= (x×z + x×1) – (y×z – y×1) – (z×x – z×y)

unity and

double

negation

= x×z + x – y×z + y – z×x + z×y

 symmetry and

associativity

= x + y + (x×z – x×z) + (y×z – y×z) zero

and

identit

y

= x+y

The entire five lines (without the hints that appear to the

right) form one binary expression meaning the same as

(x×(z+1) – y×(z–1) – z×(x–y) = (x×z + x×1) – (y×z – y×1) –

(z×x – z×y))

∧ ((x×z + x×1) – (y×z – y×1) – (z×x – z×y) = x×z + x – y×z +

y – z×x + z×y)

http://www.allstudyjournal.com/

International Journal of Advanced Academic Studies http://www.allstudyjournal.com

~ 132 ~

∧ (x×z + x – y×z + y – z×x + z×y = x + y + (x×z – x×z) + (y×z

– y×z))

∧ (x + y + (x×z – x×z) + (y×z – y×z) = x+y)

By simply writing it, we are saying that it has the same

value as a. The hint “distribute” is intended to make it clear

that

x×(z+1) – y×(z–1) – z×(x–y) = (x×z + x×1) – (y×z – y×1) –

(z×x – z×y)

is a; the hint “unity and double negation” is intended to

make it clear that

(x×z + x×1) – (y×z – y×1) – (z×x – z×y) = x×z + x – y×z + y –

z×x + z×y

is a; and so on. By the transitivity of = and the Consistency

Rule we see that

x×(z+1) – y×(z–1) – z×(x–y) = x+y

is a, and so x×(z+1) – y×(z–1) – z×(x–y) and x+y have the

same value.

We can use operators other than = down the left side of a

calculation, even a mixture, as long as there is transitivity.

For example, if x is a real-valued variable,

x×(x + 2) distribute

= x2 + 2×x identity and

zero

= x2 + 2×x + 1 – 1

 factor

= (x+1)2 – 1 a square is

nonnegative

≥ –1

tells us that x×(x+2) ≥ –1 is a. The level of hint depends on

the knowledge of the intended audience.

I have presented an algebra that unifies numbers with

booleans, types with values, and function spaces with

functions. There is no loss of structure, just loss of

duplication. This is mathematics by design. Like any design,

it is neither right nor wrong; the criteria for judging it are

usefulness and elegance.

References

1. Grundy J. Transformational Hierarchical Reasoning.

The Computer Journal 1996;39(4):291-302.

2. Hehner ECR. From Boolean Algebra to Unified

Algebra, the Mathematical Intelligencer, Springer

2004;26(2):3-19. www.cs.toronto.edu/~

hehner/BAUA.pdf

3. Hehner ECR. A Practical Theory of Programming,

Springer 1993. www.cs.toronto.edu/~hehner/aPToP

4. Hoare CAR. A Couple of Novelties in the Propositional

Calculus, Zeitschrift für Mathematische Logik und

Grundlagen der Mathematik 1985;31(2):173-8.

http://www.allstudyjournal.com/

