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Abstract 
I present a unified algebra that includes what are commonly called boolean algebra, number algebra, 

sets, lists, functions, quantification, type theory, and limits; this mathematics forms the foundation for 

much of computer science. I present the notations and the rules for the conduct of algebra, but it is not 

the purpose here to explore the possibilities for their use. I am laying foundations, not building upon 

them; I am designing the instrument, not playing the music. To appreciate the algebra, I rely on the 

reader's experience in using algebra.  
 

Keywords: Unified algebra 

 

Introduction 
The algebra is presented from the very beginning, leaving out nothing. That makes the early 

parts of the presentation very basic, but readers may appreciate the care and effort required to 

design a simple and general algebra. And it's a nontrivial problem to get the presentation 

started without ever saying “trust me for now, I'll make this clear later”. Anyone interested in 

implementation on a computer must pay attention to micro-mechanical detail. The viewpoint 

I adopt throughout is formalist, as required for implementation. 

I begin with boolean algebra, renamed “binary algebra”, and its two extremes, renamed “top” 

and “bottom”. That's the only new terminology. By contrast, standard terminology that I 

won't be using includes: boolean, true, false, proposition, sentence, term, formula, 

conjunction, conjunct, disjunction, disjunct, implication, implies, antecedent, consequent, 

axiom, theorem, lemma, proof, inference, entailment, syntax, semantics, valid, predicate, 

quantifier, universal, existential, and existence. I consider symbols and terminology to be a 

cost, not a benefit, when defining mathematical structures. Unified algebra gives us much 

more mathematics for less cost than usual. 

 

Algebra 

I will soon introduce binary algebra, ternary algebra, number algebra, the algebra of some 

data structures, and function algebra. In this section I say what is common to all of them. 

 

Expressions and Values 

An algebra consists of expressions, which are used to express values in the application 

domain. For example, the values may be amounts of water, or voltage, or frequency of 

vibration, or guilt and innocence. Here are four definitions that precede all choice of symbols 

and rules of any algebra.  

 Consistency: at most one value can be determined for each expression 

 Completeness: at least one value can be determined for each expression 

 Expressiveness: at least one expression can be determined for each value 

 Uniqueness: at most one expression can be determined for each value 

 

We must never use an expression to express more than one value; to do so would be a 

serious error called inconsistency. Sometimes we may not say what value an expression 

expresses; that is called incompleteness. For example, we will not be able to determine the 

value of 0/0. (I prefer to avoid the question of whether 0/0 has no value, or has a value but 

we cannot say what it is.) Consistency is essential; completeness is not. Expressiveness is 

desirable; uniqueness is not. In general, several expressions may represent the same value. 

When we say that 2+3 is 5, we do not mean that 2+3 and 5 are the same expression; clearly 

they are not. We mean that the value represented by 2+3 is the value represented by 5. When 

we say that 2+3 has value 5, we again mean that expression 2+3 represents the same value  
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that expression 5 represents. We might just as well say that 

5 has value 2+3. 

 

Expression structure 

An expression can be a part of a larger expression, in which 

case it is called a “subexpression” of the larger expression. 

One way to make a larger expression from a subexpression 

is to write a symbol, such as –, followed by the 

subexpression. The symbol is called an “operator”, and the 

subexpression is called its “operand”. Another way to make 

a larger expression is to write two subexpressions with a 

symbol, such as + between them. 

Placing operators between operands makes the structure of 

some expressions ambiguous. For example, 2+3×4 might 

mean that 2 and 3 are added, and then the result is 

multiplied by 4, or that 2 is added to the result of 

multiplying 3 by 4. To say which is meant, we can use 

parentheses: either (2+3)×4 or 2+(3×4). To prevent a clutter 

of parentheses, we decide on an order of evaluation. Here is 

the order of evaluation of all operators in this paper. 

 

0  constants a  0 1 3.14 and so on 

variables x y and so on 

bracketed expressions ( ) { } [ ]   within which 

the order of evaluation again applies 

1  juxtaposition f x    left to right 

2  one operand – ¢ $ ~ ¼ # → ∧ ∨ = + § + × ◊   

right to left 

two operands →    right to left 

subscript xn superscript xn   right to left 

3  two operands × / ∧ ∨ ¦–  left to right 

4  two operands + – +   left to right 

5  two operands ,,.. ‘ ; ;.. | 

three operands  

6  two operands = + < > ≤ ≥ :  

 

In the order of evaluation, two-operand + can be found on 

level 4, and two-operand × on level 3; that means, in the 

absence of parentheses, evaluate two-operand × before two-

operand +. The example 2+3×4 therefore means the same as 

2+(3×4). Within levels 1, 3, and 4 evaluation is from left to 

right. Within level 2 evaluation is from right to left. On level 

6, x = y = z means the same as (x = y)∧(y = z), and similarly 

for the other operators and mixtures of operators on that 

level. 

 

Binary algebra 

The expressions of binary algebra are called “binary 

expressions”. Binary expressions can be used to represent 

anything that comes in two kinds, such as true and false 

statements, high and low voltage, satisfactory and 

unsatisfactory computations, innocent and guilty behavior, 

north and south poles of magnets. In any application of 

binary algebra, the two things being represented are called 

the “binary values”. For example, in one application the 

binary values are truth and falsity; in another they are 

innocence and guilt. Binary expressions include: 

 

a   “top” 

   “bottom” 

–x    “negate x” 

x = y    “x equal y” 

x + y    “x differ y” 

x<y    “x below y” 

x>y    “x above y” 

x≤y    “x at most” 

x≥y    “x at least y” 

x∧y   “x min y” (memory aid: 

the symbol doesn't hold 

water) 

x∨y  “x max y” (memory aid: 

the symbol does hold 

water) 

x y    “x neg min” 

x y    “x neg max y” 

xyz    “x if y else z” 

 

The two simplest binary expressions are a and . 

Expression a represents one binary value, and expression  

represents the other. In the other binary expressions, the 

variables x, y, and z may be replaced by any binary 

expressions. Whichever value is represented by expression 

x, expression –x represents the other value. This rule can be 

shown with the aid of a value table. 

 

 
 

This table says that –a represents the same value that  

represents, and that – represents the same value that a 

represents. We can similarly show how to evaluate other 

binary expressions. 

 

 
 

Preference 

We have two binary values, and so far we have not shown 

any preference for one over the other. Now we shall show a 

preference for expressions with the value of a in four ways. 

One way is to abbreviate the statement “Expression x has 

the same value as a.” by just writing x, without saying 

anything about it. Whenever we just write a binary 

expression, we mean that it has the same value as a 

(expresses the same value that a expresses). For example, 

instead of saying “Expression a = a has the same value as 

a.” we just say “a = a”. (Remember that truth is just one of 

the binary values in just one of the applications.) 

 

Ternary algebra 

Between the two values represented by a and , we now 

consider another value, represented by 0 (pronounced 

“zero”). Ternary algebra can be applied to anything that 

comes in three kinds. In one application, the three 

expressions a, 0, and  represent the values “yes”, “maybe”, 

and “no”. In another, they represent the values “large”, 

“medium”, and “small”. An assignment of values to 
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variables that gives an expression the value 0 is called a 

“root” of the expression. 

The expressions of ternary algebra, called “ternary 

expressions”, include all those of binary algebra. To 

determine the value of these ternary expressions, we extend 

the value tables. 

 

 
 

When the variables have binary values, each expression has 

the same value as it had in binary algebra; in that sense, we 

have extended binary algebra to ternary algebra in a 

consistent way. All our future extensions will likewise be 

consistent. The expression x = –x has no solution in binary 

algebra because both assignments of binary values give it 

the value ; in ternary algebra it has solution 0.  

 

Common laws 

I have introduced binary and ternary expressions, and 

mentioned expressions of four or more values. I am about to 

introduce numbers, bunches, sets, strings, lists, and 

functions by saying how to write them and giving their laws. 

There are some laws of binary algebra that are not laws of 

any other algebra; for example, 

(x≤y) = –x ∨ y  material order 

((x=y)=z) = (x=(y=z))  associative 

((x+y)+z) = (x+(y+z))  associative 

 

The next two expressions are laws of binary algebra, and 

one of the four-valued algebras mentioned in the previous 

section, but not of any other algebra mentioned in this 

paper. 

x∨–x    excluded middle 

–(x∧–x)    non contradiction 

 

There are laws of some of our algebras that are not laws of 

binary algebra, but only because they employ symbols that 

are not symbols of binary algebra. Any law of any of our 

algebras that employs only the symbols of binary algebra is 

also a law of binary algebra. 

There are many laws that are common to all of the algebras 

in this paper; for example, 

 

 ≤ x ≤ a    extremes 

x∧ =     base 

x∨a = a     base 

x  = a     base 

x a =      base 

x∧a = x     identity 

x∨ = x     identity 

(x=a) = x    identity 

(x+) = x    identity 

x = x     reflexivity 

x ≤ x     reflexivity 

x ≥ x     reflexivity 

–(x<x)     irreflexivity 

–(x>x)     irreflexivity 

– –x = x  double 

negation  

or self-inverse 

x∧x = x     idempotence 

x∨x = x     idempotence 

(x=y) = (y=x)    symmetry 

(xy) = (yx)    symmetry 

x∧y = y∧x    symmetry 

x∨y = y∨x    symmetry 

x¦ y = y ¦x    symmetry 

x– y = y –x    symmetry 

–(x < y < x)    antisymmetry 

–(x > y > x)    antisymmetry 

–(x < y = x)    exclusivity 

–(x > y = x)    exclusivity 

(x≤y) = (x<y) ∨ (x=y)   inclusivity 

(x≥y) = (x>y) ∨ (x=y)   inclusivity 

(x>y) = (y<x)    mirror 

(x≥y) = (y≤x)    mirror 

(x<y) = (–x>–y)    reflection 

(x∧y = x) = (x≤y) = (y = x∨y)  connection 

x∧(x∨y) = x    absorption 

x∨(x∧y) = x   absorption 

–(x=y) = (–x  –y)   duality 

–(x+y) = (–x = –y)   duality 

–(x<y) = (–x ≤ –y)   duality 

–(x≤y) = (–x < –y)   duality 

–(x>y) = (–x ≥ –y)   duality 

–(x≥y) = (–x > –y)   duality 

–(x∧y) = –x ∨ –y    duality 

 –(x∨y) = –x ∧ –y    duality 

–(x y) = –x –y    duality 

–(x y) = –x –y    duality 

x ∧ (x≤y) ≤ y   modus ponens 

(x+y) = –(x=y)    unequality 

x y = –(x∧y)    neg min 

x y = –(x∨y)    neg max 

(x∧y)∧z = x∧(y∧z)   associativity 

(x∨y)∨z = x∨(y∨z)   associativity 

(x = y = z) ≤ (x=z)   transitivity 

(x < y < z) ≤ (x<z)   transitivity 

(x > y > z) ≤ (x>z)   transitivity 

(x ≤ y ≤ z) ≤ (x≤z)   transitivity 

(x ≥ y ≥ z) ≤ (x≥z)   transitivity 

x∧y ≤ y ≤ y∨z  specialization 

and 

generalization 

x∧(y∨z) = (x∧y) ∨ (x∧z)  distribution or 

factoring 

x∨(y∧z) = (x∨y) ∧ (x∨z)  distribution or 

factoring 

(x ≤ y∧z) = (x≤y) ∧ (x≤z)  distribution or 

factoring 

(x ≤ y∨z) ≥ (x≤y) ∨ (x≤z)  distribution or 

factoring 

(x∧y ≤ z) ≥ (x≤z) ∨ (y≤z)   antidistribution 

(x∨y ≤ z) = (x≤z) ∧ (y≤z)   antidistribution 

(w∧x) ∨ (y∧z) ≤ (w∨y) ∧ (x∨z) 
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x<a>y = x    base 

x< >y = y    base 

–(x<y>z) = –x<y>–z  distribution or 

factoring 

 

It is an interesting mathematical exercise to find a minimal 

set of laws for an algebra. But those who wish to use the 

algebra need to know many laws, and to them minimality is 

of no concern. In this paper, no attention has been paid to 

minimality. 

 

Number algebra 

I now introduce infinitely many values between a and . 

Here are some of them. 

 –3 –2 –1 0 1 2 3   a 

All operators apply to all values. 

The expressions of number algebra are called “number 

expressions”. They can be used to represent anything that 

comes in quantities, such as apples and water (a represents 

an infinite quantity, and  represents an infinite deficit). 

Expressions are formed as follows. any sequence of one or 

more decimal digits, such as 5296 any of the ways of 

forming an expression presented previously, such as 

–5296 or 5296∧375 or 5297=375 

x+y   “ x plus y ” 

x–y   “ x minus y ” 

x×y   “ x times y ” 

x/y   “ x divided by y ”, “ x over y ” 

xy   “ x to the power y ” 

 

Anyone is welcome to invent new expressions and add them 

to the list. 

Now that we have new expressions, we assign some of them 

the same value as †. In these laws, d is a sequence of digits. 

 

d0+1 = d1    counting 

d1+1 = d2    counting 

d2+1 = d3    counting 

d3+1 = d4    counting 

d4+1 = d5    counting 

d5+1 = d6    counting 

d6+1 = d7    counting 

d7+1 = d8    counting 

d8+1 = d9    counting 

d9+1 = (d+1)0    counting 

x+0 = x     identity 

x+y = y+x    symmetry 

x+(y+z) = (x+y)+z   associativity 

(<x<a) ≤ ((x+y = x+z) = (y=z))  cancellation 

(<x) ≤ (a+x = a)   absorption 

(x<a) ≤ (+x = )   absorption 

x + y∧z = (x+y) ∧ (x+z)  distributivity or 

factoring 

x + y∨z = (x+y) ∨ (x+z)  distributivity or 

factoring 

x + y z = (x–y) ∨ (x–z) 

x + y z = (x–y) ∧ (x–z) 

x + (y<z >w) = x+y<z >x+w  distributivity or 

factoring 

–x = 0 – x    negation 

–(x+y) = –x + –y  distributivity or 

factoring 

–(x–y) = –x – –y  distributivity or 

factoring 

–(x×y) = (–x)×y    associativity 

–(x/y) = (–x)/y    associativity 

x–y = –(y–x)    antisymmetry 

x–y = x + –y 

x + (y – z) = (x + y) – z   associativity 

(<x<a) ≤ ((x–y = x–z) = (y=z))  cancellation 

(<x<a) ≤ (x–x = 0)   inverse 

(x<a) ≤ (a–x = a)    absorption 

(<x) ≤ (–x = )   absorption 

(<x<a) ≤ (x×0 = 0)   base 

x×1 = x     identity 

x×y = y×x    symmetry 

x×(y+z) = x×y + x×z  distributivity or 

factoring 

x×(y×z) = (x×y)×z   associativity 

(<x<a) ∧ (x+0) ≤ ((x×y = x×z) = (y=z))  

     cancellation 

(0<x) ≤ (x×a = a)    absorption 

(0<x) ≤ (x× = a)   absorption 

x/1 = x     identity 

(<x<a) ∧ (x+0) ≤ (x/x = 1)  inverse 

x×(y/z) = (x×y)/z = x/(z/y)  multiplication-division 

(y+0) ≤ (x/(y/z) = x/(y×z))  multiplication-division 

(<x<a) ≤ (x/a = 0 = x/)  annihilation 

(<x<a) ≤ (x0 = 1)   base 

x1 = x     identity 

xy+z = xy×xz    exponents 

xy×z = (xy)z    exponents 

<0<1<a    direction 

(<x<a) ≤ ((x+y < x+z) = (y<z))  cancellation, 

translation 

(0<x<a) ≤ ((x×y < x×z) = (y<z))  cancellation, 

scale 

(x<y) ∨ (x=y) ∨ (x>y)   trichotomy 

 

Calculation 

Given an expression, we might find a simpler expression 

with the same value. For example, 

 

x×(z+1) – y×(z–1) – z×(x–y)  distribute 

= (x×z + x×1) – (y×z – y×1) – (z×x – z×y)  

unity and 

double 

negation 

= x×z + x – y×z + y – z×x + z×y   

   symmetry and 

associativity 

= x + y + (x×z – x×z) + (y×z – y×z) zero 

and 

identit

y 

= x+y 

 

The entire five lines (without the hints that appear to the 

right) form one binary expression meaning the same as 

 

(x×(z+1) – y×(z–1) – z×(x–y) = (x×z + x×1) – (y×z – y×1) – 

(z×x – z×y)) 

∧ ((x×z + x×1) – (y×z – y×1) – (z×x – z×y) = x×z + x – y×z + 

y – z×x + z×y) 
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∧ (x×z + x – y×z + y – z×x + z×y = x + y + (x×z – x×z) + (y×z 

– y×z)) 

∧ (x + y + (x×z – x×z) + (y×z – y×z) = x+y) 

 

By simply writing it, we are saying that it has the same 

value as a. The hint “distribute” is intended to make it clear 

that 

x×(z+1) – y×(z–1) – z×(x–y) = (x×z + x×1) – (y×z – y×1) – 

(z×x – z×y) 

 

is a; the hint “unity and double negation” is intended to 

make it clear that 

(x×z + x×1) – (y×z – y×1) – (z×x – z×y) = x×z + x – y×z + y – 

z×x + z×y 

 

is a; and so on. By the transitivity of = and the Consistency 

Rule we see that 

x×(z+1) – y×(z–1) – z×(x–y) = x+y 

is a, and so x×(z+1) – y×(z–1) – z×(x–y) and x+y have the 

same value. 

 

We can use operators other than = down the left side of a 

calculation, even a mixture, as long as there is transitivity. 

For example, if x is a real-valued variable, 

x×(x + 2)    distribute 

= x2 + 2×x  identity and 

zero 

= x2 + 2×x + 1 – 1    

     factor 

= (x+1)2 – 1  a square is 

nonnegative 

≥  –1 

 

tells us that x×(x+2) ≥ –1 is a. The level of hint depends on 

the knowledge of the intended audience.  

I have presented an algebra that unifies numbers with 

booleans, types with values, and function spaces with 

functions. There is no loss of structure, just loss of 

duplication. This is mathematics by design. Like any design, 

it is neither right nor wrong; the criteria for judging it are 

usefulness and elegance. 
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